Titrage du dioxyde de soufre – Traitement de l'incertitude

Objectif: il s'agit d'estimer l'incertitude type sur la concentration molaire en dioxyde de soufre.

Les relations mathématiques données dans ce TP ne sont pas à retenir. Vous devez être capable de les exploiter pour déterminer correctement l'incertitude type sur votre résultat et le présenter avec le bon nombre de chiffres significatifs.

RAPPEL - RELATION ENTRE LES QUANTITÉS DE MATIÈRE À L'ÉQUIVALENCE

D'après l'équation de la réaction support du titrage, on a montré qu'on pouvait écrire à l'équivalence :

$$\frac{n_{eq}(MnO_{4})}{2} = \frac{n_{titre}(SO_{2})}{5}$$

$$\frac{C_{MnO_{4}} \times V_{eq}}{2} = \frac{C_{SO_{2}} \times V_{titre}}{5}$$

Détermination de l'incertitude type sur la valeur de la concentration en SO_2

On a montré dans le TP que :

$$C_{SO_2} = \frac{5}{2} \times \frac{C_{MnO_4^-} \times V_{\acute{eq}}}{V_{titr\acute{e}}}$$

La valeur de la concentration en dioxyde de soufre est déterminée avec une incertitude due à :

- x l'incertitude sur la concentration de la solution titrante : $u(C_{MnO.})$;
- x l'incertitude sur le volume de solution titrée prélevé à la pipette jaugée : $u(V_{titré})$;
- x l'incertitude sur le volume versé à l'équivalence, mesuré à la burette graduée : $u(V_{\rm \acute{e}q})$.

Ces incertitudes se propagent sur la valeur de $C(SO_2)$ et on peut montrer que :

$$\frac{u\left(C_{SO_{2}}\right)}{C_{SO_{2}}} = \sqrt{\left(\frac{u\left(V_{\text{\'eq}}\right)}{V_{\text{\'eq}}}\right)^{2} + \left(\frac{u\left(V_{\text{titr\'e}}\right)}{V_{\text{titr\'e}}}\right)^{2} + \left(\frac{u\left(C_{MnO_{4}}\right)}{C_{MnO_{4}}}\right)^{2}}$$

Incertitude type sur $V_{\text{\'eq}}$

Le volume à l'équivalence est déterminé grâce à une burette graduée de classe A. Relevez les indications sur la précision de cette verrerie :

- x tolérance : $t = \pm 0.030 \text{ mL}$;
- x intervalle minimal entre deux graduations : $\Delta = \mathcal{O}_{0} \circ 5$... mL.

L'incertitude type sur le volume à l'équivalence combine :

- x l'incertitude due à la tolérance annoncée par le constructeur : $u_{tol}(V_{\acute{e}q}) = \frac{t}{\sqrt{3}}$;
- x l'incertitude due à la lecture du volume (double lecture : sur le « zéro » et sur le volume

versé):
$$u_{lect}(V_{\acute{e}q}) = \sqrt{2 \times \left(\frac{\Delta}{2\sqrt{3}}\right)^2} = \frac{\Delta}{\sqrt{6}}$$
;

x l'incertitude sur la persistance de la teinte fuchsia : $u_{deter}(V_{eq}) = \frac{\Delta V}{\sqrt{3}}$, liée à la rapidité du

changement de couleur à l'équivalence.

Ces trois incertitudes types se combinent pour obtenir l'incertitude totale sur $V_{\text{\'eq}}$:

$$\mathbf{u}_{\text{totale}}(\mathbf{V}_{\text{\'eq}}) = \sqrt{\mathbf{u}_{\text{tol}}^2 + \mathbf{u}_{\text{lect}}^2 + \mathbf{u}_{\text{deter}}^2}$$

Incertitude type sur $V_{\text{titré}}$

Le volume de solution titré est mesuré avec une pipette jaugée de 10 mL, de classe A. Relever sa tolérance : $t=\pm .0.62$ mL.

L'incertitude type sur le volume de solution titré se calcule par : $u(V_{titré}) = \frac{t}{\sqrt{3}}$

Calculs numériques des incertitudes types

Le tableau ci-dessous permet de consigner les calculs des différentes incertitudes.

			1
${f V}_{ m \acute{e}q}$	Burette: $t=\pm 0.03$. mL $\Delta = 0.05$ mL $\Delta V = 0.05$ mL (a oute) Remarque: une goutte a un volume de 0,05 mL	$u_{\text{tol}}(\mathbf{V}_{\text{\'eq}}) = \frac{t}{\sqrt{3}}$	1,7321×10°2 mL
		$\mathbf{u}_{\mathrm{lect}}(\mathbf{V}_{\mathrm{\acute{e}q}}) = \frac{\Delta}{\sqrt{6}}$	2,0412× 10 ⁻²
		$\mathbf{u}_{\text{deter}}(\mathbf{V}_{\text{\'eq}}) = \frac{\Delta \mathbf{V}}{\sqrt{3}}$	2,8868×10 ⁻² mL
		$u_{\text{totale}}(V_{\text{éq}}) = \sqrt{u_{\text{tol}}^2 + u_{\text{lect}}^2 + u_{\text{deter}}^2}$	3,9370x 10-2
V titré	Pipette jaugée: t=±.%.6.2. mL	$u(\mathbf{V}_{titré}) = \frac{t}{\sqrt{3}}$	1,1547×10-2 mL
C _{MnO₄}	Fabriquée au laboratoire	$\frac{Incertitude \ relative}{C_{MnO_4^2}}: \frac{u(C_{MnO_4^2})}{C_{MnO_4^2}}$	3,6562×10 ⁻³ Estimée par l'enseignant lors de la préparation de la solution
C _{SO₂}	Rappel des résultats : $V_{\text{titré}} = 10,0 \text{ mL}$ $V_{\text{éq}} = .67 \text{ mL}$ $C_{\text{SO}_2} = .3.50.400 \text{ mol} \cdot \text{L}^{-1}$	$\frac{u\left(C_{SO_{2}}\right)}{C_{SO_{2}}} = \sqrt{\left(\frac{u\left(V_{\acute{eq}}\right)}{V_{\acute{eq}}}\right)^{2} + \left(\frac{u\left(V_{titr\acute{e}}\right)}{V_{titr\acute{e}}}\right)^{2} + \left(\frac{u\left(C_{MnO_{4}}\right)^{2}}{C_{MnO_{4}^{*}}}\right)^{2}}$	69442×10-3

Tous les résultats intermédiaires ne doivent pas être arrondis : garder au moins cinq chiffres significatifs.

- 1. Après avoir complété le tableau, calculez l'incertitude type sur la concentration en dioxyde de soufre $u(C_{SO,})$. Exprimez le résultat avec un seul chiffre significatif.
- 2. Exprimer le résultat de la mesure de C_{so,} avec le nombre de chiffres significatifs cohérent avec la précision de l'incertitude type.

u((sor) = 69442×10⁻³ donc u(Csor) = 5,0026×10⁻⁵md.L⁻¹

Esulvar:

= 850×10⁻⁵md.L⁻¹avec

u(Csor) = 6×10⁻⁵md.L⁻¹

incertivade type de 6x10 md. L'